

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Templating

By standard, the original Blade library is part of Laravel (Illuminate components) and
to use this template library, you’re required to install Laravel and Illuminate-view components.

With BladeOne, we’re able to import most features of Laravel blade without having to
install unwanted Illuminate components.

They are no significant difference in syntax or usage between this template engine and that of the existing Laravel blade,
therefore, if you’re already familiar with Laravel blade templating
you might find this documentation pretty boring and hence advised to skip.

Usage

Inheritance

In parent view (layout page)

Tag	Note
—	—
@section('sidebar')	Start a new section with the name as sidebar
@show	Indicates where the content of section will be displayed
@yield('title')	Shows here the content of the section named title

In child view (using the layout page)

Tag	Note
—	—
@extends('layouts.page')	Instructs the application to inherit a parent view with name layouts.page
@section('title', 'My Title')	Sets ‘My Title’ as the content of the section title
@section('sidebar')	Starts a block of code as the content of a section named sidebar
@endsection	End a block of code

Example

Parent View

<html>
 <head>
 <title>@yield('title')</title>
 </head>
 <body>
 <div>Content</div>
 <div>@section('sidebar')</div>
 </body>
</html>

Child View

@section('title', 'Welcome to ' . $app_name)
@section('sidebar')
 This is a sidebar for {{$app_name}}
@endsection

Given that a variable $app_name = 'Blade', the resulting HTML will be

<html>
 <head>
 <title>Welcome to Blade</title>
 </head>
 <body>
 <div>Content</div>
 <div>This is a sidebar for Blade</div>
 </body>
</html>

Variables

Tag	Note
—	—
{{$variable}}	escapes and displays the value of the variable using htmlentities to avoid xss attacks
@{{$variable}}	show the value of the content directly (not evaluated, useful for js)
{!!$variable!!}	Displays the value of the variable without escaping
{{ $variable or 'Default' }}	Displays the variable or default if the variable is null or undefined
{{Class::StaticFunction($variable)}}	calls and displays the value of a function

Logic

Tag	Note
—	—
@if(boolean)	if logic-conditional statement
@elseif(boolean)	else if logic-conditional statement
@else	else logic statement
@endif	end if logic statement
@unless(boolean)	execute block of code if boolean is false

Loop

For loop

Template

@for($variable; $condition; $increment)
 //List items here
@endfor

Generates a loop until the condition is met and the variable is incremented for each loop

Tag	Note	Example				
—	—	—				
$variable	is a variable that should be initialized.	$i=0		$condition	is the condition that must be true, otherwise the cycle will end.	$i<10
$increment	is how the variable is incremented in each loop.	$i++				

Example:

@for ($i = 0; $i < 3; $i++)
 The current value is {{ $i }}

@endfor

Returns:

The current value is 0
The current value is 1
The current value is 2

Foreach

Template

@foreach($array as $alias) / @endforeach

Generates a loop for each values of the variable.

Tag	Note	Example				
—	—	—				
$array	Array to loop through	$countries		$alias	A variable that holds the item in the current loop.	$country

Example: Given that $users is an array of objects

@foreach($users as $user)
 This is user {{ $user->id }}
@endforeach

Returns:

This is user 1
This is user 2

Forelse

Template

@forelse($array as $alias)
 //List item here
@empty
 //Default goes here. Something to display if the array is empty
@endforelse

Its the same as foreach but jumps to the @empty tag if the array is null or empty

Tag	Note	Example				
—	—	—				
$array	Array to loop through	$countries		$alias	A variable that holds the item in the current loop.	$country

Example: Given that $users is an array of objects.

@forelse($users as $user)
 {{ $user->name }}
@empty
 <p>No users</p>
@endforelse

Returns:

John Doe
Anna Smith

While

Template

@while($condition) / @endwhile

Loops until the condition is not meet.

Tag	Note	Example
—	—	—
$condition	The cycle loops until the condition is false.	$counter<10

Example: Given $users is an array of objects

@set($whilecounter=0)
@while($whilecounter<3)
 @set($whilecounter)
 I'm looping forever.

@endwhile

Returns:

I'm looping forever.
I'm looping forever.
I'm looping forever.

Split Foreach

Template

@foreach
 @splitforeach($n, $textbetween, $textend="")
@endforeach

This functions show a text inside a @foreach cycle every “n” of elements.This function could be used when you want to add columns to a list of elements.

NOTE: The $textbetween is not displayed if its the last element of the last.With the last element, it shows the variable $textend

Tag	Note	Example				
—	—	—				
$nElem	Number of elements	2		$textbetween	Text to show	</tr><tr>
$textend	Text to show	</tr>				

Example: Given $users is an array of objects

<table border="1">
<tr>
 @foreach($drinks7 as $drink)
 <td>{{$drink}}</td>
 @splitforeach(2,'</tr><tr>','</tr>')
 @endforeach
</table>

Returns a table with 2 columns.

Continue and Break

Template

@continue

@break

Continue jump to the next iteration of a cycle.@break jump out of a cycle.

|Tag|Note|Example|
|—|—|—|

Example: Given that $users is an array of objects

@foreach($users as $user)
 @if($user->type == 1) // ignores the first user John Smith
 @continue
 @endif
 {{ $user->type }} - {{ $user->name }}

 @if($user->number == 5) // ends the cycle.
 @break
 @endif
@endforeach

Returns:

2 - Anna Smith

Switch case

Example:

@switch($countrySelected)
 @case(1)
 first country selected

 @break
 @case(2)
 second country selected

 @break
 @defaultcase()
 other country selected

@endswitch()

	@switch The first value is the variable to evaluate.

	@case Indicates the value to compare. It should be run inside a @switch/@endswitch

	@default (optional) If not case is the correct then the block of @defaultcase is evaluated.

	@break Break the case

	@endswitch End the switch.

Sub Views

Tag	Note
—	—
@include('folder.template')	Include a template
@include('folder.template',['some' => 'data'])	Include a template with new variables
@each('view.name', $array, 'variable')	Includes a template for each element of the array
Note: Templates called folder.template is equals to folder/template

@include

Includes a template

You could include a template as follow:

<div>
 @include('shared.errors')
 <form>
 <!-- Form Contents -->
 </form>
</div>

You can also pass parameters to the template

@include('view.name', ['some' => 'data'])

@includeif

Additionally, if the template does not exist then it will fail.
You could avoid it by using includeif

@includeIf('view.name', ['some' => 'data'])

@includefast

@Includefast is similar to @include.
However, it does not allow parameters because it merges the template in a big file (instead of relying on different files),
so it must be fast at runtime by using more space on the hard disk versus less call to read a file.

@includefast('view.name')

This template runs at compile time, so it does not work with runtime features such as @if() @includefast() @endif()

Comments

Tag	Note
—	—
{{-- text --}}	Include a comment

Stacks

Tag	Note
—	—
@push('elem')	Add the next block to the push stack
@endpush	End the push block
@stack('elem')	Show the stack

@set

@set($variable=[value])

@set($variable) is equals to @set($variable=$variable+1)

	$variable defines the variable to add. If not value is defined and it adds +1 to a variable.

	value (option) define the value to use.

Asset Management

The next libraries are designed to work with assets (CSS, JavaScript, images and so on).
While it’s possible to show an asset without a special library but it’s a challenge if you want to work with a relative path using an MVC route.

For example, let’s say the next example:
http://localhost/img/resource.jpg

you could use the full path.

However, it will fail if the server changes.
So, you could use a relative path.

However, it fails if you are calling the web
http://localhost/controller/action/

because the browser will try to find the image at
http://localhost/controller/action/img/resource.jpg
instead of
http://localhost/img/resource.jpg

So, the solution is to set a base URL and to use an absolute or relative path

Absolute using @asset

is converted to

Relative using @relative

is converted to (it depends on the current url)

@asset

It returns an absolute path of the resource.

@asset('js/jquery.js')

@resource

It’s similar to @asset. However, it uses a relative path.

@resource('js/jquery.js')

Database

Finding Records

Finding stuff in the database is easy:

<?php

$post = SampleModel::withId(3);

This will get the post with the id of 3

<?php

$posts = SampleModel::find('title LIKE ?', ['holiday']);

This will search for all posts having the word ‘holiday’ in the title and will return an collection containing all the relevant beans as a result. As you see, we don’t use a fancy query builder, just good old SQL.
We like to keep things simple.

Besides using the find() functions, you can also use raw SQL queries:

<?php

$posts = DB::getAll('SELECT * FROM posts WHERE comments < ? ', [50]);

Model vs OODBean

An OODBean or bean is an object mapping of a record in your database.
Models internally wraps a bean, and provides more functions that makes it easier to manipulate bean objects.
You can call Model->getBean() to get the underlying bean

Code Difference

Using Model (The Liteframe Way)

<?php

$post = SampleModel::dispense();
$post->title = 'My holiday';
$id = $post->save();

Using RedBeanPHP’s R (The RedBeanPHP Way)

<?php

$post = R::dispense('posts');
$post->title = 'My holiday';
R::store($post);

Both examples above creates a new bean, sets it’s title to ‘My holiday’ and saves it to the database.
Whichever method you prefer to use is fine.

DB vs R

R is the standard class by ReadBeanPHP for manipulating beans
DB (recommended) is an R with more functions

Relationships

RedBeanPHP also makes it easy to manage relations. For instance, if we like to add some photos to our holiday post we do this:

<?php

$post->ownPhotoList[] = $photo1;
$post->ownPhotoList[] = $photo2;
$post->save();

Here, $photo1 and $photo2 are also beans (but of type ‘photo’).
After storing the post, these photos will be associated with the blog post.
To associate a bean you simply add it to a list. The name of the list must match the name of the related bean type.

So photo beans go in:
$post->ownPhotoList

comments go in:
$post->ownCommentList

and notes go in:
$post->ownNoteList

See? It’s that simple!

To retrieve associated beans, just access the corresponding list:

<?php

$post = SampleModel::load($id);
$firstPhoto = reset($post->ownPhotoList);

In the example above, we load the blog post and then access the list.
The moment we access the ownPhotoList property, the relation will be loaded automatically,
this is often called lazy loading, because RedBeanPHP only loads the beans when you really need them.

To get the first element of the photo list, we simply used PHP’s native reset() function

For more information, see RedBeanPHP’s documentation on Relationships [https://redbeanphp.com/index.php?p=/one_to_many]

Model Events

Explain model events

setProperty* and getProperty* functions

Explain the setProperty* and getProperty* functions

Find more on RedBeanPHP website [https://redbeanphp.com/crud]

Getting Started

Quotes like this one are comments for developers.

Installation

Download the latest release here [https://github.com/AVONnadozie/LiteFrame/releases] and unzip. That’s all!

Still need it the Composer way?

composer create-project avonnadozie/liteframe

Ensure the storage folder is writable, preferably 777.

On UNIX systems, you can do this with the command

chmod 0777 -R storage

Running LiteFrame

On Production

No extra setup required, simply place the application files on your server document root folder, most likely to be public_html

On Local

Run the cli serve command to start the local server and optionally specify a port

php cli serve --port=5000

This will start the local server at address 127.0.0.1:5000

Architecture Concept

Request Lifecycle

This part of the document aims to give you an overall view on how the framework works to help you understand the framework better. If you find some terms strange, it’s okay, you will understand them and get familiar as you read on.

Like most PHP applications, all requests to the framework is directed to the index.php file. The index.php file does not contain much. Rather, it is a starting point for loading the rest of the framework.

The index.php file loads all files required by the framework (including Composer files if present) and then creates a \LiteFrame\Kernel object to handle the request.

The Kernel instance gets the LiteFrame\Http\Request and LiteFrame\Http\Routing\Route objects for the current request, and obtains the target Closure or Controller from the Route object. See this section on how to define routes using LiteFrame\Http\Routing\Router.

All Middleware attached to the target (if any) are then executed before executing the target, and the Kernel finally terminates the framework.

Directory Structure

Important directories and files

app
 |____ Commands //Application commands
 |____ Controllers //Application controllers
 |____ Middlewares //Application middlewares
 |____ Models //Application model
 |____ Routes //Application route files
 |____ Views //Application view files
 |____ .htaccess //Prevents direct access to files in this folder and subfolders
assets //(Optional) public assets such as css, images and JavaScript files
components
 |____ bootstrap //App bootstrap files
 |____ composer //(Optional) Composer files
 |____ config //Config files
 |____ helpers //Helper files
 |____ libraries //3rd party libraries
 |____ env.php //Environment specific configurations (to be created by you)
 |____ env.sample //Sample env.php file
 |____ .htaccess //Prevents direct access to files in this folder and subfolders
docs //(Optional) Documentation
storage
 |____ private //Private application data
 |____ public //Public application data
 | |____ .htaccess //Allows direct access to files in this folder and subfolders
 |____ system
 | |____ logs //Error logs
 | |____ Views //Compiled views files
 |____ .htaccess //Prevents direct access to files in this folder and subfolders
tests //Test files
.htaccess //Important .htaccess file
cli //Entry point for command line requests
index.php //Entry point for HTTP requests

The Basics

Routing

Basics

All routes are defined in your route files, which are located in the app/Routes directory.
These files are automatically loaded by the framework.
The app/Routes/web.php file defines routes that are for your web interface.
The routes in app/Routes/api.php are stateless and are suited for API calls,
while app/Routes/cli.php are for commands.

The simpler method for web and api routes accepts just a URI and a Closure

<?php

Router::get('foo', function () {
 return 'Hello World';
});

Alternatively, you can specify a controller action in place of the closure.

<?php

Router::get('foo', 'AppController@helloworld');

This will be explained further down

Available Router Methods

The router allows you to register routes that respond to the common HTTP verbs:

<?php

//Match GET requests
Router::get($route, $target);

//match POST requests
Router::post($route, $target);

//Match PUT requests
Router::put($route, $target);

//Match PATCH requests
Router::patch($route, $target);

//Match DELETE requests
Router::delete($route, $target);

Sometimes you may need to register a route that responds to multiple HTTP verbs.
You can do so using the Router::anyOf method.

Or, you may even register a route that responds to all HTTP verbs using the Router::all method:

<?php

//Match any of the request method specified
Router::anyOf('POST|PUT|GET', $route, $target);

//Match all request methods
Router::all($route, $target);

Mapping

To map your routes, use any of the methods.

<?php

//Match GET requests
Router::get($route, $target);

//match POST requests
Router::post($route, $target);

//Match PUT requests
Router::put($route, $target);

//Match PATCH requests
Router::patch($route, $target);

//Match DELETE requests
Router::delete($route, $target);

//Match any of the request method specified in the first parameter
Router::anyOf($method, $route, $target);

//Match all request methods
Router::all($route, $target);

Parameters

	$method - This is a pipe-delimited string of the accepted HTTP requests methods. Example: GET|POST|PATCH|PUT|DELETE

	$route - This is the route pattern to match against. This can be a plain string, one of the predefined regex filters or a custom regex. Custom regexes must start with @.

Examples:

| Route | Example Match | Variables |
|—|—|—|
| /contact/ | /contact/ | nil |
| /users/[i:id]/ | /users/12/ | $id = 12 |

$target - This can be either a function callback or a Controller@action string.

Example using a function callback:

<?php

Router::get('user/profile', function () {
 //Do something
});

Example using a Controller@action string:

<?php

Router::get('user/profile', 'UserController@showProfile');

Interestingly, we can also match multiple routes at once by supplying an array of routes to the Router::matchAll method.
For example,

<?php

Router::matchAll(array(
 array('POST|PUT', 'profile/create', 'ProfileController@create'),
 array('GET', 'profile', 'ProfileController@show'),
 array('DELETE', 'profile/[i:id]', 'ProfileController@delete'),
));

Match Types

You can use the following limits on your named parameters.
The framework will create the correct regexes for you

* // Match all request URIs
[i] // Match an integer
[i:id] // Match an integer as 'id'
[a:action] // Match alphanumeric characters as 'action'
[h:key] // Match hexadecimal characters as 'key'
[:action] // Match anything up to the next / or end of the URI as 'action'
[*] // Catch all (lazy, stops at the next trailing slash)
[*:trailing] // Catch all as 'trailing' (lazy)
[**:trailing] // Catch all (possessive - will match the rest of the URI)
.[:format]? // Match an optional parameter 'format' - a / or . before the block is also optional

The character before the colon (the ‘match type’) is a shortcut for one of the following regular expressions

'i' => '[0-9]++'
'a' => '[0-9A-Za-z]++'
'h' => '[0-9A-Fa-f]++'
'*' => '.+?'
'**' => '.++'
'' => '[^/\.]++'

You can register your own match types using the addMatchTypes() method.

<?php

Router::getInstance()->addMatchTypes(array('cId' => '[a-zA-Z]{2}[0-9](?:_[0-9]++)?'));

Once your routes are all mapped you can start matching requests and continue processing the request.

Named Routes

If you want to use reversed routing, Named routes allow you to conveniently specify a name parameter so you can later generate URL’s using this route.
You may specify a name for a route by chaining the setName method onto the router:

<?php

Router::get('user/profile', function () {
 //To do
})->setName('profile');

Or you may specify the route name after the target:

<?php

//For anyOf
Router::anyOf('GET|POST','user/profile', 'AppController@showProfile','profile');

//For other Router methods
Router::get('user/profile', 'AppController@showProfile','profile');

To reverse a route, use the route($routeName, $params); helper with optional parameters

Parameters

$routeName | string - Name of route

$params | array - Optional parameters to build the URL with

Redirect Route

With Redirect Route you can redirect a route permanently to another route or a url.

Redirecting to a route

<?php

Router::redirect($route, 'another-route-name');

This route will redirect to the route named another-route-name

Redirecting to a url

<?php

Router::redirect($route, 'https://example.com');

This route will redirect to the URL http://example.com

View Route

This allows you to return a view as response directly without the need for closures or controllers.

<?php

Router::view($route, 'view-name');

Where view-name is the name of the view.

Additionally, you can pass data to the view as such.

<?php

$data = array('name'=>'John Doe');
Router::view($route, 'view-name', $data);

Route Grouping

Route grouping is a feature that allows you to group routes with related properties such as route names, URL prefix, middlewares and/or controller namespaces.

Behaviours to note:

	Groups can be nested infinitely.

	Nested groups and routes inherit the properties of their parent groups.

	Name of routes inside a group will be a concatenation of it’s parent group(s) names and it’s assigned name

	URI of routes inside a group will be a concatenation of it’s parent groups prefixes using the character ‘/’

	Namespace of controllers in a group will be a concatenation of it’s parent groups namespace using the character ‘’

	Middleware of a route in group(s) will be a union of it’s parent group(s) middleware and it’s middleware

Code Sample:

<?php
Router::group(['prefix' => 'sample-prefix', 'middlewares' => ['sampleMiddleware']], function() {

 Router::get('/', function (Request $request) {
 return "Grouped route with name index";
 })->setName('index');

 //Nested Group to inherit properties of parent group
 Router::group(['namespace' => 'Nested', 'name' => 'nested.'], function() {
 Router::get('/nested', 'MyController@index')->setName('index');
 });
});

This example defines two groups and two routes.

The first route which inherits the first group will have it’s name as index,
middleware as sampleMiddleware, URI as /sample-prefix

The second route which inherits properties of the two groups will therefore have
it’s name as nested.index, controller’s namespace as Nested\MyController,
middleware as sampleMiddleware, and URI as /sample-prefix/nested

Requests

Each http request is represented by a LiteFrame\Http\Request object.
The current Request object is passed to the request target controller
or closure as the first parameter, from which you can access information
for the current request through the object.
For example, given a request object $request and a GET or POST request parameter id,
to access the parameter you can simple call $request->input('id')
or conveniently access it as a property of the $request object as $request->id

Alternatively, you can access the request object using Request::getInstance()

Code Sample:

<?php

Router::get('/post/[:id]', function (Request $request) {
 return 'Post id is ' . $request->id;
});

Middleware

The Basics

Middleware provide a convenient mechanism for filtering HTTP requests
entering your application and responses sent by the application.

All of these middleware are located in the app/Middlewares directory
and should extend Middlewares/Middleware class in the same directory.

<?php

namespace Middlewares;

use Closure;
use LiteFrame\Http\Request;

class MySampleMiddleware extends Middleware
{
 public function run(Closure $next = null, Request $request = null)
 {

 //Do something before controller

 $response = $next($request);

 //Do something after controller

 return $response;
 }
}

For the framework to run your middleware, you have to register it in the
components/config/middleware.php file. Simply add your middleware class to
the before_core or after_core key of the array.

<?php

return [
 /*
 * Array of middleware classes that should be executed before core middleware
 * classes are executed on every request.
 */
 'before_core' => [
 Middlewares\MySampleMiddleware ::class
],
 /*
 * Array of middleware classes that should be executed after core middleware
 * classes are executed.
 */
 'after_core' => [
 Middlewares\MySampleMiddleware ::class
],
];

Named/Route Middleware

You may also specify middleware to run only for specific routes.
To do this, you have to register your middleware with a name

<?php

return [
 /*
 * Example of a route/named middleware
 */
 'sample' => Middlewares\MySampleMiddleware::class
];

Then set it for the required routes like this

<?php

Router::get('user/profile', 'AppController@showProfile')
 ->setMiddlewares("sample");

To juice things up, the setMiddlewares method can accept multiple middleware names:

<?php

Router::get('user/profile', 'AppController@showProfile')
 ->setMiddlewares("sample1", "sample2");

Or

<?php

Router::get('user/profile', 'AppController@showProfile')
 ->setMiddlewares(["sample1", "sample2"]);

Controllers

Instead of defining all of your request handling logic as Closures in route files,
you may wish to organize this behavior using Controller classes.
Controllers can group related request handling logic into a single class.
Controllers are stored in the app/Controllers directory and extends
the Controllers/Controller class.

Routing to a controller action/method

<?php

Router::get('user/profile', 'AppController@showHelloWorld');

Controller Middleware:

Middleware may be assigned to the controller’s routes in your route files:

<?php

Route::get('profile', 'UserController@show')
 ->setMiddlewares('sample');

However, if you need to bind all or most of the function of a controller to a
middleware, it will be more convenient to specify the middleware
within your controller’s constructor and optionally supply a list of
whitelist functions. Using the middleware method from the controller’s constructor:

<?php

class AppController extends Controller
{

 public function __construct()
 {
 $this->middleware('sample', ['index']);
 }
}

This will apply the sample middleware to all controller functions in
this class except the index function.

Response

Basics

All routes and controllers should return a response to be sent back to the user’s browser.

They are several different ways to return responses.
The most basic response is returning a string from a route or controller.
The application will automatically convert the string into a LiteFrame\Http\Response object
which translates to a full HTTP response.

<?php

Router::get('/', function () {
 return 'Hello World';
});

You may also return arrays.
The application will automatically convert the array into a JSON response.

<?php

Router::get('/', function () {
 return [1, 2, 3];
});

Alternatively, you can choose to return the response object directly.

<?php

Router::get('/', function () {
 return Response::getInstance()
 ->setContent('Hello World')
 ->setStatusCode(200);
});

The LiteFrame\Http\Response object provides other useful functions such as:

	appendContent($content, $code = 200) appends content to response

	download($path, $name = null) forces browser to download file

	file($path) opens a file in browser

	header($key, $value) sets HTTP header for the response

	isJson() returns true if the response will be sent as JSON

	json($content) sets a JSON content

	prependContent($content, $code) prepends content to the response

	redirect($url, $code = 302) sends a 302 redirect to a url

	redirectToRoute($name, $code = 302) sends a 302 redirect to the route with the given name

	setStatusCode($code) sets HTTP status code for the reponse

	setContent($content, $code = 200) sets response content

	toHtml() - converts response to HTML

	toJson() converts response to JSON

	toPlain() converts response to Plain text

	view($name, $data = []) sends a view as response

Views

Views are static files which the application returns as response.
At runtime, the application replaces variables in these files with actual values,
and transforms the content into an HTML file sent to the client.

Traditionally, view files are located in app/Views, but this can be changed in the views configuration file.

Example View 1 (layouts/head.php)

<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- Bootstrap -->
<link rel="stylesheet" type="text/css" href="<?= asset('css/materialize.min.css') ?>">

Example View 2 (layouts/page.php)

<!DOCTYPE html>
<html lang="en">
 <head>
 <?= includeView('layouts.head') ?>
 <title><?= $name?></title>
 </head>
 <body>
 <h1>Hello World</h1>
 </body>
</html>

includeView() includes a view in another.

To return a view as response, use the view() function, specifying the name of the view you wish to return.
The name of the view is basically the filename relative to the views folder without the extension.
It’s recommended to replace the directory separator in the filenames with dots.

For example, a file with filename app/Views/example/base.php will have the name example.base and a file with filename
app/Views/base.php will have it’s name as just base

Example

<?php

return view('layouts.page');

Note: LiteFrame supports having multiple view locations.

Templates

Templates are views with improved syntax and features.
They provide benefits such as easy output escaping, view inheritance and sections.

LiteFrame supports templating using BladeOne [https://github.com/EFTEC/BladeOne],
a standalone version of the Blade Template Engine.

Blade files should end with the .blade.php extension in order to be compiled.

Example View 1 (layouts/base.blade.php)

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <!-- Bootstrap -->
 <link rel="stylesheet" type="text/css" href="<?= asset('css/materialize.min.css') ?>">
 <title>{{$name}}</title>
 </head>
 <body>
 @yield('body')
 </body>
</html>

Example View 2 (layouts/page.blade.php)

@extends('layouts.base')
@section('body')
 <h1>Hello World</h1>
@endsection

To return this view as response in your controller

<?php

return view('layouts.page', $dataIfAny);

Note: Templates are used the same way as other views, if you have a blade file e.g base.blade.php,
and you have another view with the same name although with a different extension
e.g base.php,
the blade version base.blade.php will override the other view base.php

You can read more about blade templating here

Commands

Basics

Explain the basics in creating commands.

Scheduling

Explain scheduling.

Errors & Logging

Environment Variables

Explain how to configure app environment variables.

Error Pages

Explain how to create error pages to override the default error page on production.

Helpers

Explain how to add helper functions.

Database

Getting Started

LiteFrame Database is based on RedBeanPHP [https://redbeanphp.com/], an easy to use ORM for PHP.

It’s a Zero Config ORM library that automatically builds your database schema on the fly.
By Zero Config, we mean, you need no verbose XML files, no annoying annotations, no YAML or INI, just start coding.

If you’re already familiar with RedBeanPHP, this should be a piece of cake for you.
If you’re not familiar with RedBeanPHP, we’re sorry, it’s still the same piece of cake for you.
Summary, you do not need to know how to use RedBeanPHP to understand how to use LiteFrame Database.

Remember to update components/config/database.php with details of your database connection.

Requirements

	PDO, plus the driver you wish to use for your database

	Multibyte String Support

Models

Models are classes corresponding to database tables which is used to interact with that table. Models allow you to query for data in your tables, as well as insert new records into the table.

To make a model, simply create a class in app/Models and extend Models\Model.
The class name of a model will be automatically used to create and access it’s table.
If you wish to use a different table name from your model class name simple override the $table property.

For example:

<?php

namespace Models;

class SampleModel extends Model
{
 protected static $table = 'posts';
}

Here, the SampleModel class is now set to be accessing and manipulating the posts table.
This will be used in other examples on this documentation.

Creating Records

Now you’re ready to start using Database.
Liteframe Database makes it really easy to store stuff in the database. For instance, to store a blog post in the database you write:

<?php

$post = SampleModel::dispense();
$post->title = 'My holiday';
$id = $post->save();

Now, a table called post and a column called title, big enough to hold your text will be created for you in the database.
The save() function will also return the primary key ID of the record, which we capture in the variable $id.
The table and columns will be created automatically if they do not already exist.

Alright, freeze!

As you have seen, the structure of the database dynamically changes during development. This is a very nice feature, but you don’t want that to happen on your production server! So, when you set your application to production, we freeze the database.

Before you deploy, review your database schema.
Maybe you added a column you no longer use, or you want an extra index. Always make sure you review the final database schema before you put it on a production server!
After freezing the database, your database structure will no longer be changed, so you have the best of both worlds.
NoSQL-like flexibility during development and a reliable schema on your production server!

This was just a quick tour, showcasing some basic usage of Liteframe Database with RedBeanPHP.
For more details please explore the documentation on database.

Working with Libraries

Autoloading Files

Explain how to autoload custom files.

3rd-Party Libraries

Explain how to autoload 3rd party libraries.

Composer

In as much as we “really” avoided the need for commands, we could not help supporting composer.
Composer files are auto-detected by the framework if available but we changed the vendor directory to components/composer for security reasons.

Security

URI Security

Explain URI security using type hints

Use of .htaccess

Explain strategic .htaccess files

Request Validation

Explain Validator

Filtering Output

Explain output filtering using e()

Testing

Explain how to run tests

Contributing

To contribute,

	Fork the project on Github

	Make your bug fix or feature addition.

	Add tests for it. This is important so we don’t break it in a future version unintentionally.

	Send a pull request.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

